Jambmaths
Maths Question | |
---|---|
Question 1 |
Which Question paper type of mathematics is indicated above is given to you |
Question 2 |
$\text{Convert 2}{{\text{7}}_{10}}\text{ to another number in base three}$ |
Question 3 |
3 girls share a number of apples in the ratio 5:3:2 If the highest share is 40 apples, find the smallest |
Question 4 |
$\begin{align} & \text{Evaluate }\frac{1.25\times 0.025}{0.05},\text{ correct to 1 decimal place} \\ & \text{(A) 0}\text{.6 (B) 6}\text{.2 (C) 6}\text{.3 (D) }0.5 \\\end{align}$ |
Question 5 |
Calculate the time taken for N3000 to earn N600 if invested at 8 % simple interest |
Question 6 |
$\text{Simplify }\frac{{{3}^{-5n}}}{{{9}^{1-n}}}\times {{27}^{n+1}}$ |
Question 7 |
$\begin{align} & \text{If }{{\log }_{10}}4=0.6021,\text{ evaluate }{{\log }_{10}}{{4}^{\tfrac{1}{3}}} \\ & \text{(A) }0.3011\text{ (B) 0}\text{.9021 (C) }1.8063\text{ (D) 0}\text{.2007} \\\end{align}$ |
Question 8 |
$\begin{align} & \text{Simplify }\frac{\sqrt{5}(\sqrt{147}-\sqrt{12})}{\sqrt{15}} \\ & \text{(A) 5 (B) }\tfrac{1}{5}\text{ (C) }\tfrac{1}{9}\text{ (D) }9 \\\end{align}$ |
Question 9 |
P,Q and R are subset of the universal set U. The Venn diagram show showing the relationship $(P\cap Q)\cup R$ is |
Question 10 |
$\begin{align} & \text{If }P=\{x:x\text{ is odd, }-1<x\le 20\}\text{ and }Q=\{y:y\text{ is prime, }-2<y\le 25\},\text{ find }P\cap Q \\ & \text{(A) }\!\!\{\!\!\text{ 3,5,7,11,17,19 }\!\!\}\!\!\text{ } \\ & \text{(B) }\!\!\{\!\!\text{ 3,5,11,13,17,19 }\!\!\}\!\!\text{ } \\ & \text{(C) }\!\!\{\!\!\text{ 3,5,7,11,13,17,19 }\!\!\}\!\!\text{ } \\ & \text{(D) }\!\!\{\!\!\text{ 2,3,5,7,11,13,17,19 }\!\!\}\!\!\text{ } \\\end{align}$ |
Question 11 |
$\begin{align} & \text{If }S=\sqrt{{{t}^{2}}-4t+4},\text{ find }t\text{ in terms of }S \\ & \text{(A) }{{S}^{2}}-2\text{ (B) }S+2\text{ (C) }S-2\text{ (D) }{{S}^{2}}+2 \\\end{align}$ |
Question 12 |
$\begin{align} & \text{If }x-4\text{ is a factor of }{{x}^{2}}-x-k,\text{ then }k\text{ is } \\ & \text{(A) 4 (B) 12 (C) 20 (D) 2} \\\end{align}$ |
Question 13 |
$\begin{align} & \text{The remainder when }6{{p}^{3}}-{{p}^{2}}-47p+30\text{ is divided by }p-3\text{ is } \\ & \text{(A) }21\text{ (B) 42 (C) 63 (D) 18} \\\end{align}$ |
Question 14 |
$\begin{align} & P\text{ varies jointly as }m\text{ and }u,\text{ varies inversely as }q.\text{ Given that }p=4,\text{ }m=3\text{ } \\ & \text{and }u=2\text{ when }q=1,\text{find the value of }p\text{ when }m=6,u=4\text{ and }q=\tfrac{8}{5} \\ & (A)\text{ }\tfrac{128}{5}\text{ (B) }15\text{ (C) 10 (D) }\tfrac{288}{5} \\\end{align}$ |
Question 15 |
$\begin{align} & \text{If }r\text{ varies inversely as the square root of }s\text{ and }t\text{ how does }s\text{ vary with }r\text{ and }t. \\ & (A)\text{ }s\text{ varies directly as }r\text{ and }t \\ & (B)\text{ }s\text{ varies inversely as }r\text{ and }{{t}^{2}} \\ & (C)\text{ }s\text{ varies inversely as }{{r}^{2}}\text{ and }t \\ & (D)\text{ }s\text{ varies directly as }{{r}^{2}}\text{ and }{{t}^{2}} \\\end{align}$ |
Question 16 |
$\begin{align} & \text{Evaluate }3(x+2)>6(x+3) \\ & (A)\text{ }x>4\text{ }(B)\text{ }x<4\text{ }(C)\text{ }x>-4\text{ }(D)\text{ }x<-4 \\\end{align}$ |
Question 17 |
|
Question 18 |
$\begin{align} & \text{Solve for }x:\text{ }\left| x-2 \right|<3 \\ & \text{(}A)\text{ }x<1\text{ }(B)\text{ }x<5\text{ }(C)\text{ }-2<x<3\text{ (D) }-1<x<5 \\\end{align}$ |
Question 19 |
$\begin{align} & \text{If the sum of the first term of G}\text{.P is 3, and the sum of the second and} \\ & \text{the third term is }-6,\text{ find the sum of the first term and the common ratio} \\ & \text{(A) 5 (B) }-2\text{ (C) }-3\text{ }(D)\text{ }-5 \\\end{align}$ |
Question 20 |
$\begin{align} & \text{The }nth\text{ term of the progression }\tfrac{4}{2},\tfrac{7}{3},\tfrac{10}{4},\tfrac{13}{4},\cdot \cdot \cdot \text{ is} \\ & (A)\text{ }\tfrac{3n-1}{n+1}\text{ }(B)\text{ }\tfrac{1-3n}{n+1}\text{ }(C)\text{ }\tfrac{3n+1}{n+1}\text{ (D) }\tfrac{3n+1}{n-1} \\\end{align}$ |
Question 21 |
$\begin{align} & \text{If a binary operation }*\text{ is defined by }x*y=x+2y,\text{ find }2*(3*4) \\ & (A)\text{ }26\text{ }(B)\text{ }24\text{ }(C)\text{ }16\text{ }(D)\text{ }14 \\\end{align}$ |
Question 22 |
$\begin{align} & \text{If }P=\left[ \begin{matrix} 5 & 3 \\ 2 & 1 \\\end{matrix} \right]\text{ and }Q=\left[ \begin{matrix} 4 & 2 \\ 3 & 5 \\\end{matrix} \right],\text{ find }2P+Q \\ & (A)\text{ }\left[ \begin{matrix} 8 & 14 \\ 7 & 7 \\\end{matrix} \right] \\ & (B)\text{ }\left[ \begin{matrix} 7 & 7 \\ 14 & 8 \\\end{matrix} \right] \\ & (C)\text{ }\left[ \begin{matrix} 14 & 8 \\ 7 & 7 \\\end{matrix} \right] \\ & (D)\text{ }\left[ \begin{matrix} 7 & 7 \\ 8 & 14 \\\end{matrix} \right] \\\end{align}$ |
Question 23 |
$\begin{align} & \text{Find the inverse of }\left[ \begin{matrix} 5 & 3 \\ 6 & 4 \\\end{matrix} \right] \\ & (A)\left[ \begin{matrix} 2 & \tfrac{3}{2} \\ -3 & \tfrac{5}{2} \\\end{matrix} \right] \\ & (B)\left[ \begin{matrix} 2 & -\tfrac{3}{2} \\ -3 & -\tfrac{5}{2} \\\end{matrix} \right] \\ & (C)\left[ \begin{matrix} 2 & -\tfrac{3}{2} \\ -3 & \tfrac{5}{2} \\\end{matrix} \right] \\ & (D)\,\left[ \begin{matrix} 2 & \tfrac{3}{2} \\ -3 & -\tfrac{5}{2} \\\end{matrix} \right] \\\end{align}$ |
Question 24 |
In the diagram above, find the value of x |
Question 25 |
The value of x in the figure above is |
Question 26 |
$\begin{align} & \text{If the angle of a quadrilateral are }{{(3y+10)}^{\circ }},\text{ }{{(2y+30)}^{\circ }},{{(y+20)}^{\circ }}\text{ and }4{{y}^{\circ }},\text{ } \\ & \text{Find the value of }y\text{ } \\ & \text{(A) 1}{{\text{2}}^{\circ }}\text{ (B) 3}{{\text{0}}^{\circ }}\text{ (C) 4}{{\text{2}}^{\circ }}\text{ (D) 6}{{\text{6}}^{\circ }} \\\end{align}$ |
Question 27 |
A square has side 30cm. How many of these tiles will a cover a rectangular floor of length 7.2m and width 4.2 m? |
Question 28 |
$\begin{align} & \text{Find the length of a chord which subtends an angle of 9}{{\text{0}}^{\text{o}}}\text{ at the centre of a } \\ & \text{circle whose radius is 8cm} \\ & \text{(A) }4cm\text{ (B) }8cm\text{ }(C)\text{ }8\sqrt{2}cm\text{ (D) }8\sqrt{3}\text{ cm} \\\end{align}$ |
Question 29 |
$\begin{align} & \text{A chord of a circle suntends an angle of 12}{{\text{0}}^{\circ }}\text{ at the centre of a circle of diameter }4\sqrt{3}cm\text{. } \\ & \text{Calculate the area of the major sector} \\ & \text{(A) }4\pi \text{ (B) }8\pi \text{ (C) }16\pi \text{ }(D)\text{ }32\pi \\\end{align}$ |
Question 30 |
The locus of the point which is equidistant from the PQ forms a |
Question 31 |
If the mid point of PQ is (2,3) and the point P is (-2,1). Find the coordinate of the point |
Question 32 |
Find the equation of the perpendicular bisector of the line joining P(2,-3) to Q(-5,1) |
Question 33 |
In a triangle PQR, q =8cm,r = 6cm and$\cos P=\tfrac{1}{12}$. Calculate the value of p |
Question 34 |
If $\tan \theta =\tfrac{3}{4}$, find the value of $\sin \theta +\cos \theta$ |
Question 35 |
$\begin{align} & \text{If }y={{(2x+2)}^{3}},\text{ find }\frac{dy}{dx} \\ & (A)\text{ }6{{(2x+2)}^{2}}\text{ }(B)\text{ }3{{(2x+2)}^{2}}\text{ }(C)\text{ }6(2x+2)\text{ }(D)\text{ }3(2x+2) \\\end{align}$ |
Question 36 |
$\begin{align} & \text{If }y=x\sin x,\text{ find }\frac{dy}{dx} \\ & \text{(A) }\sin x+x\cos x\text{ (B) }\sin x+\cos x\text{ (C) }\cos x-x\sin x\text{ (D) }\cos x+x\sin x \\\end{align}$ |
Question 37 |
$\begin{align} & \text{The radius of a circle is increasing at the rate of 0}\text{.02cm}{{\text{s}}^{-1}}.\text{ Find the rate at which the area is } \\ & \text{increasing when the radius of the circle is 7cm} \\ & \text{(A) 0}\text{.88c}{{\text{m}}^{2}}{{s}^{-1}}\text{ (B) }0.75c{{m}^{2}}{{s}^{-1}}\text{ (C) }0.53c{{m}^{2}}{{s}^{-1}}\text{ (D) }0.35c{{m}^{2}}{{s}^{-1}} \\\end{align}$ |
Question 38 |
$\begin{align} & \text{Integrate }\left( \frac{1+x}{{{x}^{3}}} \right)dx \\ & \text{(A) }-\frac{1}{2{{x}^{2}}}-\frac{1}{x}+k\text{ (B) }-\frac{{{x}^{2}}}{2}-\frac{1}{x}+k\text{ (C) }{{x}^{2}}-\frac{1}{x}+k\text{ (D) }2{{x}^{2}}-\frac{1}{x}+k \\\end{align}$ |
Question 39 |
$\text{Evaluate }\int_{0}^{\tfrac{\pi }{4}}{\sin xdx}$ |
Question 40 |
The bar chart above shows the allotment of time (in minutes) per week for selected subjects in a certain school. What is the total time allocated to the six subject per weeks? |