University Maths Solution
Maths Question | |
---|---|
Question 1 |
$\begin{align} & \text{Find the equation whose roots are numerically equal to those of }2{{x}^{2}}+2x-12=0 \\ & \text{but of opposite signs} \\\end{align}$ |
Question 2 |
$\begin{align} & \text{If the roots of the equation }{{x}^{2}}+7x+8=0\text{ are whose roots are }\alpha \text{ and }\beta ,\text{ } \\ & \text{Find the equation whose roots are }{{\alpha }^{2}}\text{ and }{{\beta }^{2}} \\\end{align}$ |
Question 3 |
$\begin{align} & \text{If the roots of the equation }2{{x}^{2}}+x+1=0\text{ are }\alpha \text{ and }\beta .\text{ Form the equation whose roots are } \\ & \tfrac{1}{{{\alpha }^{2}}}\text{ and }\tfrac{1}{{{\beta }^{2}}} \\\end{align}$ |
Question 4 |
$\begin{align} & \text{If }\alpha \text{ and }\beta \text{ are the roots of the equation }7+12x-7{{x}^{2}}=0,\text{ } \\ & \text{Find the equation whose roots are }\tfrac{\alpha }{\beta }\text{ and }\tfrac{\beta }{\alpha } \\\end{align}$ |
Question 5 |
$\begin{align} |
Question 6 |
$\begin{align} & \text{If }\alpha \text{ and }\beta \text{ are roots of the equation }6{{x}^{2}}-10x+3=0,\text{ } \\ & \text{Find the value of } \\ & \text{(}i\text{) }{{(\alpha -\beta )}^{2}}\text{ } \\ & \text{(}ii\text{) }{{\alpha }^{2}}+{{\beta }^{2}}\text{ } \\ & \text{(}iii\text{) }({{\alpha }^{3}}+{{\beta }^{3}})\text{ } \\ & \text{(}iv\text{) }({{\alpha }^{3}}-{{\beta }^{3}})\text{ } \\ & \text{(}v\text{) }\tfrac{1}{\alpha }+\tfrac{1}{\beta } \\ & (vi)\text{ }\tfrac{1}{{{\alpha }^{2}}}+\tfrac{1}{{{B}^{2}}}\text{ } \\ & (vii)\text{ }\tfrac{\alpha }{\beta }+\tfrac{\beta }{\alpha } \\\end{align}$ |
Question 7 |
$\begin{align} |
Question 8 |
$\begin{align} |
Question 9 |
$\text{Show that }2{{x}^{2}}+3x+7\text{ is always for real value of }x.\text{ Find its minimum value}$ |
Question 10 |
$\begin{align} & \text{Express the following in terms of }\alpha \beta \text{ and }\alpha +\beta \\ & (i){{\alpha }^{2}}-{{\beta }^{2}} \\ & (ii){{\alpha }^{2}}+{{\beta }^{2}} \\ & (iii){{\alpha }^{3}}-{{\beta }^{3}} \\ & (iv){{\alpha }^{3}}+{{\beta }^{3}} \\ & (v){{\alpha }^{4}}-{{\beta }^{4}} \\ & (vi)\frac{1}{\alpha }+\frac{1}{\beta } \\ & (vii)\frac{1}{{{\alpha }^{2}}}+\frac{1}{{{\beta }^{2}}} \\\end{align}$ |