waecmaths question:
Find the smallest value of k such that ${{2}^{2}}\times {{3}^{3}}\times 5\times k$ is a perfect square
Option A:
3
Option B:
5
Option C:
15
Option D:
30
waecmaths solution:
$\begin{align} & {{2}^{2}}\times {{3}^{3}}\times 5\times k={{2}^{2}}\times {{3}^{2}}\times 3\times 5\times k={{2}^{2}}\times {{3}^{2}}\times 15\times k \\ & \text{For perfect square }k=15 \\ & {{2}^{2}}\times {{3}^{3}}\times 5\times k={{2}^{2}}\times {{3}^{2}}\times 15\times 15 \\\end{align}$
maths year:
maths topics: