waecmaths question:
Simplify the expression $\frac{{{a}^{2}}{{b}^{4}}-{{b}^{2}}{{a}^{4}}}{ab(a+b)}$
Option A:
${{a}^{2}}-{{b}^{2}}$
Option B:
${{b}^{2}}-{{a}^{2}}$
Option C:
${{a}^{2}}b-a{{b}^{2}}$
Option D:
$a{{b}^{2}}-{{a}^{2}}b$
waecmaths solution:
$\begin{align} & \frac{{{a}^{2}}{{b}^{4}}-{{b}^{2}}{{a}^{4}}}{ab(a+b)}=\frac{{{a}^{2}}{{b}^{2}}({{b}^{2}}-{{a}^{2}})}{ab(a+b)}=\frac{{{(ab)}^{2}}(b-a)(b+a)}{ab(a+b)} \\ & \frac{{{a}^{2}}{{b}^{4}}-{{b}^{2}}{{a}^{4}}}{ab(a+b)}=ab(b-a)=a{{b}^{2}}-{{a}^{2}}b \\\end{align}$
maths year:
maths topics: